一，选择题（ $1 \sim 10$ 小题，每小题 4 分，共 40 分．在每小题给出的四个选项中，只有一项是符合题目要求的）
1．设 $f(x)=\mathrm{e}^{2}+\sqrt{x}$ ，则 $f^{\prime}(x)=$ 【 】
A． $\mathrm{e}^{2}+\frac{1}{2 \sqrt{x}}$
B．$\frac{1}{2 \sqrt{x}}$
C．$\frac{2}{\sqrt{x}}$
D．$\frac{1}{\sqrt{x}}$

【答索】B

2．极限 $\lim _{2 \rightarrow+\infty} \frac{\mathrm{e}^{x}-\mathrm{e}^{-x}}{x}$ 等于【】
A． 0
B． 1
C． 2
D．$+\infty$
【答索】D
3．设函数 $f(x)$ 在 $[0,1]$ 上连续，在 $(0,1)$ 内可导，且 $f^{\prime}(x)<0$ ，则下列结论成立的是【】
A．$f(0)<0$
B．$f(1)>0$
C．$f(1)>f(0)$
D．$f(1)<f(0)$

【荅素】D

4．曲线 $y=x^{3}(x-4)$ 的拐点个数为【】
A． 1 个
B． 2 个
C． 3 个
D． 0 个
【答索】B
5．设 $F(x)$ 是 $f(x)$ 的一个原函数，则 $\int \cos x f(\sin x) \mathrm{d} x$ 等于 【】
A．$F(\cos x)+C$
B，$F(\sin x)+C$
C．$-F(\cos x)+C$
D．$-F(\sin x)+C$

【答亲】B
6．下列积分中，值为零的是【】
A． $\int_{-\frac{1}{4}}^{4} x \sin ^{2} x \mathrm{~d} x$
B． $\int_{-1}^{1}|x| \mathrm{d} x$
c． $\int_{0}^{\frac{\pi}{4}} \sin x \mathrm{~d} x$
D． $\int_{0}^{\frac{F}{4}} \cos x \mathrm{~d} x$
【答㶳】A
7．直线 $\frac{x}{-3}=\frac{y}{0}=\frac{z}{5}$ 【】

A．过原点且与 y 轴垂直
B．不过原点但与 y 轴垂直
C．过原点且与 y 轴平行
D．不过原点但与 y 轴平行
【答紊】 A
8．设函数 $f(x, y)=x y+(x-1) \tan \sqrt[3]{\frac{y}{x}}$ ，则 $f_{y}(1,0)$ 等于【】
A． 0
B． 1
C． 2
D．不存在
【答紊】B

9．下列级数中，绝对收敛的是【】
A．$\sum_{n=1} \sin \frac{1}{2 n}$
B．$\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{1}{n^{\frac{7}{4}}}$
C．$\sum_{n=1}^{\infty}(-1)^{n-1} \cdot \frac{1}{2^{n}}$
D．$\sum_{n=1}^{n}(-1)^{n-1} \cdot \frac{1}{n+2}$

【答亲】 C
10．极限 $\lim _{x \rightarrow \infty} \frac{\sin 2 x}{x}$ 等于 【】
A． 2
B． 1
C．$\frac{1}{2}$
D． 0

【答紊】D

1．设集合 $M=\{-1,0,1\}$ ，集合 $N=\{0,1,2\}$ ，则集合 $M U N$ 为（ D ）。
A．$\{0,1\}$
B．$\{0,1,2\}$
C．$\{-1,0,0,1,1,2\}$
D．$\{-1,0,1,2\}$
2．不等式 $|x-1| \geq 2$ 的解集为（B）。
A．$\{x \mid-1 \leq x \leq 3\}$ B．$\{x \mid x \geq 3$ 或 $x \leq-1\}$ C．$\{x \mid-3 \leq x \leq 3\}$ D．$\{x \mid x \geq 3, x \leq-3\}$
3．设 甲：$\triangle A B C$ 是等腹三角形。
乙：$\triangle A B C$ 是等边三角形。
泤下说法正确的是（B）
A．甲是乙的充分争件，但不是必贾录件
B．甲是乙的必要条件，但不是充分条件
C．甲是乙的充要氽件
D．甲不是乙的充分条件也不是乙的必贾条件
4．设合题 甲：$k=1$ ．
合題 乙：直线 $y=k x$ 与直线 $y=x+1$ ．
则（c）
A．甲是乙的充分条件，但不是必要条件
B．甲是乙的必要条件，但不是充分条件
C．甲是乙的充要条件
D．甲不是乙的充分条件也不是乙的必要条件
5．设 $\tan \alpha=1$ ，且 $\cos \alpha<0$ ，则 $\sin \alpha=(\mathrm{A})$

$$
\text { A. }-\frac{\sqrt{2}}{2} \text { B. }-\frac{1}{2} \text { C. } \frac{1}{2} \text { D. } \frac{\sqrt{2}}{2}
$$

6．下列各函数中，为偶屟数的是（D）
A．$y=2^{x}$
B．$y=2^{-x}$
C．$y=x+\cos x$
D．$y=$ ：

7．函数 $y=\sqrt{\frac{3}{2-x}}$ 的定义域是（B）
A．$\{x \mid x \leq 2\}$ B．$\{x \mid x<2\}$ C
c．$\{x \mid x=2\}$
D．$\{x \mid x>2\}$

8．下列屑数在区间 $(0,+\infty)$ 上为增层数的是（B）
A．$y=\cos x$ B．$y=2^{x}$ C．$y=2-x^{2}$
D．$y=\log _{\frac{1}{3}} x$

9．设 $\mathrm{a}=(2,1), \mathrm{b}=(-1,0)$ ，则 $3 \mathrm{a}-2 \mathrm{~b}$ 为 (A)

$$
\text { A. }(8,3) \text { B. }(-8,-3) \text { C. }(4,6) \text { D. }(14,-4)
$$

10．已知曲线 $k x=x y+4 k$ 过点 $P(2,1)$ ，则 k 的值为（C）
A． 1
B． 2 C．-1
D．－2

11．过 $(1,-1)$ 与直线 $3 x+y-6=0$ 平行的直线方程是（B）
A． $3 x-y+5=0$
B． $3 x+y-2=0$
C．$x+3 y+5=0$
D． $3 x+y-1=0$

12．已知 $\triangle A B C$ 中，$\triangle B=A C=3, \cos A=\frac{1}{2}$ ，则 $B C$ 长为（ A ）
A． 3
B． 4
C． 5
D． 6

13．双曲线 $\frac{x^{2}}{16}-\frac{y^{2}}{9}=1$ 的渐近线方程为（ D ）

$$
\text { A. } y= \pm \frac{16}{9} x \text { B. } y= \pm \frac{9}{16} x \text { C. } \frac{x}{3} \pm \frac{y}{4}=0 \quad \text { D. } \frac{x}{4} \pm \frac{y}{3}=0
$$

14．相图 $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ 的茟距为（ A ）
A． 10
B． 8 C． 9
D． 11

15．袋子里有 3 个里球和 5 个日球。任意从袋子中取出一个小球，那么取出果球的梚本等于（ D ）

A．$\frac{1}{3}$ B．$\frac{1}{5} \quad$ C．$\frac{5}{8}$ D．$\frac{3}{8}$
16．设 $a, b \in R$ ，且 $a<b$ ，则下列管式成立的是（D）
A．$a^{2}<b^{2}$ B．$a c<b c$ C．$\frac{1}{a}<\frac{1}{b}$ D．$a-b<0$
17．已知 P 为曲线 $y=2 x^{3}$ 上一点，且 P 点的㮖垩标为 1 ，财该曲线在点 P 处的切线方程是 （ A ）
A． $6 x+y-4=0$
B． $6 x+y-2=0$
C． $6 x^{-} y^{-2}=0$
D． $6 x^{-} y^{-4}=0$

1．函数 $y=1+\sin x$ 是（ D ）
（A）奇函数
（B）偶函数
（C）单调增加函数
（D）有界函数．

2．若 $f(u)$ 可导，且 $y=f\left(\mathrm{e}^{x}\right)$ ，则（ B$)$ ；
（A）$d y=f\left(e^{x}\right) d x$ ；
（B）$d y=f\left(\mathrm{e}^{x}\right) \mathrm{e}^{x} \mathrm{dx}$ ；
（C） $\mathrm{d} y=f\left(e^{x}\right) e^{x} d x$ ；
（D）$d y=\left[f\left(\mathrm{e}^{x}\right)\right]^{x} \mathrm{e}^{x} d x$ ．

解析 $y=f\left(\mathrm{e}^{z}\right)$ 可以看作由 $y=f(u)$ 和 $u=\mathrm{e}^{x}$ 贯合而成的贯合教数
由貫合政数求导法

$$
\begin{aligned}
& y^{\prime}=f^{\prime}(u)\left(e^{x}\right)^{\prime}=f^{\prime}(u) \cdot e^{x}, \\
& d y=y^{\prime} \cdot \mathrm{d} x=f^{\prime}\left(\mathrm{e}^{x}\right) e^{x} \mathrm{~d} x .
\end{aligned}
$$

所以
3． $\int_{0}^{+\pi} e^{-x} d x=\left(\begin{array}{l}B\end{array}\right)$ ；
（A）不收敵：
（B） 1 ；
（c）-1 ；
（D） 0

解析 $\int_{0}^{+\infty} \mathrm{e}^{-x} \mathrm{dx}=-\left.\mathrm{e}^{-x}\right|_{0} ^{+\pi}=0+1=1$ ．
4．$y^{\prime}-2 y^{\prime}+y=(x+1) \mathrm{e}^{x}$ 的特解形式可误为（A），
（A）$x^{2}(a x+b) e^{x}$ ；
（B）$x(a x+b) e^{x}$ ；
（C）$(a x+b) e^{x} ;$
（D）$(a x+b) x^{2}$ ．

解析 特征方程为 $r^{2}-2 r+1=0$ ，特征根为 $r_{1}=r_{2}=1 . ~ \lambda=1$ 是特征方程的特征重根，于是有 $y_{p}=x^{2}(a x+b) \mathrm{e}^{x}$ ．

5． $\iint_{D} \sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y=(\mathrm{c})$ ，其中 $D: 1 \leqslant x^{2}+y^{2} \leqslant 4$ ；
（A） $\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{1}^{4} r^{2} \mathrm{~d} r$ ；
（B） $\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{1}^{4} r \mathrm{~d} r$ ；
（C） $\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{1}^{2} r^{2} \mathrm{~d} r$ ；
（D） $\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{1}^{2} r \mathrm{~d} r$ ．

解析 此题考察直角坐标系下的二重积分转化为极坐标形式．
当 $\left\{\begin{array}{l}x=r \cos \theta \\ y=r \sin \theta\end{array}\right.$ 时， $\mathrm{d} x d y=r \mathrm{~d} r \mathrm{~d} \theta$ ，由于 $1 \leqslant x^{2}+y^{2} \leqslant 4, D$ 表示为 $1 \leq r \leq 2$ ， $0 \leq \theta \leq 2 \pi$ ，故 $\iint_{D} \sqrt{x^{2}+y^{2}} \mathrm{~d} x \mathrm{~d} y=\iint_{D} r \cdot r \mathrm{~d} r \mathrm{~d} \theta=\int_{0}^{2 \pi} \mathrm{~d} \theta \int_{1}^{2} r^{2} \mathrm{~d} r$ ．

6．函数 $y=\frac{1}{\sqrt{3-x^{2}}}+\arcsin \left(\frac{x}{2}-1\right)$ 的定义域 \qquad
数符号内的式子绝对值小于等于 1．可建立不等式组，并求出联立不等式组的解．即

$$
\left\{\begin{array} { l }
{ \sqrt { 3 - x } \neq 0 , } \\
{ 3 - x ^ { 2 } > 0 , } \\
{ | \frac { x } { 2 } - 1 | < 1 , }
\end{array} \quad \text { 推得 } \left\{\begin{array}{c}
-\sqrt{3}<x<\sqrt{3}, \\
0 \leq x \leq 4,
\end{array}\right.\right.
$$

即 $0 \leq x<\sqrt{3}$ ，因此，所给函数的定义城为 $[0, \sqrt{3})$ ．
7．求极限 $\lim _{x \rightarrow 2} \frac{2-\sqrt{x+2}}{2-x}=$ \qquad
解：原式 $=\lim _{x \rightarrow 2} \frac{(2-\sqrt{x+2})(2+\sqrt{x+2})}{(2-x)(2+\sqrt{x+2})}$
$=\lim _{x \rightarrow 2} \frac{1}{2+\sqrt{x+2}}$ $=\frac{1}{4}$ ．（恒等变换之后＂能代就代＂）
8．求极限 $\lim _{x \rightarrow 1} \frac{\int_{1}^{x} \sin \pi t \mathrm{~d} t}{1+\cos \pi x}=$
解：此极限是＂$\frac{0}{0}$＂型未定型，由洛必达法则，得

$$
\lim _{x \rightarrow 1} \frac{\int_{1}^{x} \sin \pi t \mathrm{~d} t}{1+\cos \pi x}=\lim _{x \rightarrow 1} \frac{\left(\int_{1}^{x} \sin \pi t \mathrm{~d} t\right)^{\prime}}{(1+\cos \pi x)^{\prime}}=\lim _{x \rightarrow 1} \frac{\sin \pi x}{-\pi \sin \pi x}=\lim _{x \rightarrow 1}\left(\frac{1}{-\pi}\right)=-\frac{1}{\pi}
$$

9．曲线 $\left\{\begin{array}{l}x=t, \\ y=t^{3},\end{array}\right.$ 在点 $(1,1)$ 处切线的科审 \qquad
解：由题意知：

$$
\begin{gathered}
\left\{\begin{array}{l}
1=t, \\
1=t^{3},
\end{array} \Rightarrow t=1,\right. \\
\left.\therefore \frac{\mathrm{d} y}{\mathrm{~d} x}\right|_{s=1}=\left.\frac{\left(t^{3}\right)^{\prime}}{(t)^{\prime}}\right|_{t=1}=\left.3 t^{2}\right|_{s+1}=3,
\end{gathered}
$$

\therefore 曲线在点 $(1,1)$ 处切线的料事为 3

10．方程 $y^{\prime \prime}-2 y^{\prime}+y=0$ ，的通解为 \qquad
解：特征方程 $r^{2}-2 r+1=0$ ，特征根 $r_{1}=r_{2}=1$ ，
通解为 $y=\left(C_{1}+C_{2} x\right) e^{x}$ ．

1．函数 $f(x)$ 在点 $x=x 0$ 的某一邻域有定义，已知 $f^{\prime}(x 0)=0$ 且 $f^{\prime \prime}(x 0)=0$ ，则在点 $x=x 0$ 处，$f(x)($
A．必有极值
B．必有拐点
C．可能有极值也可能没有极值
D．可能有拐点也可能没有拐点
2．下列 $\mathrm{f}(\mathrm{x})$ 和 $\mathrm{g}(\mathrm{x})$ 是相同函数的是 (BD)
A．$f(x)=x$ 和 $g(x)=(\sqrt{x})^{2}$
B．$f(x)=\sqrt{x^{2}}$ 和 $g(x)=|x|$
C．$f(x)=\lg x^{2}$ 和 $g(x)=2 \lg x$
D．$f(x)=\lg x^{2}$ 和 $g(x)=2 \lg |x|$

3．下列变量在给定变化过程中是无穷小量的是（ A, D ）。
A． $2^{-x}-1 \quad(x \rightarrow 0)$
B．$\frac{\sin }{x} x \quad(x \rightarrow 0)$
C．$\frac{x^{2}}{\sqrt{x^{3}-2 x+1}} \quad(x \rightarrow+\infty)$
D．$\frac{x^{2}}{x+1}\left(1-\sin \frac{1}{x}\right) \quad(x \rightarrow 0)$

4．当 $|x|<$ 时，$y=\sqrt{1-x^{2}}$ 是（ A, B, D ）．
A．连㳳面数
B．有界还数
C．有最大值和最小值
D．有最大值无最小值

5．若 $\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a}=A, \mathrm{~A}$ 为常数，则有（ $\left.\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}\right)$ ．
A． $\mathrm{f}(\mathrm{x})$ 在点 $\mathrm{x}=\mathrm{a}$ 处连续
B．$f(x)$ 在点 $x=a$ 处可导
C． $\lim _{x \rightarrow a} f(x)$ 存在
D．$f(x)-f(a)=A(x-a)+o(x-a)$

6．设对于任意 x ，都有 $f(-x)=-f(x), f^{\prime}\left(-x_{0}\right)=-k \neq 0$ ，则 $f^{\prime}\left(x_{0}\right)=\left(\begin{array}{ll}\mathrm{B}\end{array}\right)$ 。
A．k
B．-k
c．$\frac{1}{k}$
D．$-\frac{1}{k}$

7．下列永极限问嬑不能使用罗玮塔法则的是（ A，C ）。
A． $\lim _{x \rightarrow 0} \frac{x^{2} \sin \frac{1}{x}}{\sin x}$
B． $\lim _{x \rightarrow+\infty} x\left(\frac{\pi}{2}-\operatorname{arctg} x\right)$
c． $\lim _{x \rightarrow \infty} \frac{x-\sin x}{x+x \sin x}$
D． $\lim _{x \rightarrow \infty}\left(1+\frac{k}{x}\right)^{x}$

8．下列逯数中偶屟数有（ B，C ）。
A．$x a^{-x^{2}}$
B．$\frac{\sin x}{x}$
C．$x^{2}+\cos x$
D．$\frac{10^{x}-10^{-x}}{2}$

9．在区间 (a, b) 内，如果 $f^{\prime}(\mathrm{x})=\varphi^{\prime}(x)$ ，则一定有（ B, D ）．
A．$f(x)=\varphi(x)$
B．$f(x)=\varphi(x)+C$
C． $\int f(x) d x=\int \varphi(x) d x^{\prime}$
D． $\int d f(x)=\int d \varphi(x)$

10．函数 $z=\frac{1}{\ln (x+y)}$ 的定义域是（D）．
A．$x+y \neq 0$
B．$x+y>0$
C．$x+y \neq 1$
D．$x+y>0$ 且 $x+y \neq 1$

选择题，在每小题垥出的四个选项中，只有一项是符合题目要求的
1．已知函数 $f(x)=a x^{2}+b$ 的图像经过点 $(1,2)$ ，且其反函数 $f^{-1}(x)$ 的图像经过点 $(3,0)$ ，则函数 $\mathrm{f}(\mathrm{x})$ 的解析式是
A．$f(x)=\frac{1}{2} x^{2}+\frac{3}{2}$
B．$f(x)=-x^{2}+3$
C．$f(x)=3 x^{2}+2$
D．$f(x)=x^{2}+3$

【答案】B

2.

已知全集 $U=\mathbf{R}, A=\left\{x|x \geqslant 1|, B=\{x \mid-1<x \leqslant 2\}\right.$ ，则 $\oint_{U} A \cup B=$ I
A．$\{x \mid x \leqslant 2\}$
B．$\{x \mid x<2\}$
C．$\{x \mid-1<x \leqslant 2\}$
D．$\{x \mid-1<x<1\}$

【答案】 A
$)^{3 .}$
$a \in\left(0, \frac{\pi}{2}\right), \sin a, a, \tan a$ 的大小顺序是
A． $\tan \alpha>\sin a>\alpha$
B． $\tan a>\alpha>\sin \alpha$
C．$a>\tan a>\sin a$
D． $\sin a>\tan a>a$

【答案】B

4．已知偶函数 $y=f(x)$ 在区间 $[a, b](0<a<b)$ 上是增函数，那么它在区间 $[-b,-a]$ 上是
A．增函数
B．减函数
C．不是单调函数
D．常数
【答案】B

5．下列成立的式子是
A． $0.8^{-0.1}<\log _{2} 0.8$
B． $0.8^{-0.1}>0.8^{-6.2}$
C． $\log _{1} 0.8<\log _{4} 0.8$
D． $3^{0.1}<3^{\circ}$

［答案】 C

6．下列函数【】是非奇非偶函数．
A．$f(x)=x$
B．$f(x)=x^{2}-2|x|-1$
C．$f(x)=2^{\text {le }}$
D．$f(x)=2^{\prime}$

【答案】D
7．下列函数的周期是 π 的是
A．$f(x)=\cos ^{2} 2 x-\sin ^{2} 2 x$
B．$f(x)=2 \sin 4 x$
C．$f(x)=\sin x \cos x$
D．$f(x)=4 \sin x$

【答素】 C

8． 5 名高中毕业生报考 3 所院校，每人只能报一所院校，则有【】种不同的报名方法．
A．P_{3}^{3}
B． 5^{1}
C． 3^{5}
D．C_{3}

【答案】C

9．设甲：$a>b ;$ 乙：$|a|>|b|$ ，则
A．甲是乙的充分条件
B．甲是乙的必要条件
C．甲是乙的充要条件
D．甲不是乙的充要条件
【答案】D

10．把点 $A(-2,3)$ 平移向量 $a=(1,-2)$ ，则对应点 A^{\prime} 的坐标为
A．$(-1,1)$
B．$(1,-1)$
C．$(-1,-1)$
D．$(1,1)$

【答案】A

11．长方体有一个公共顶点的三个面的面积分别为 $4,8,18$ ，则此长方体的体积为
A． 12
B． 24
C． 36
D． 48

【答案】B

12.

已知复数 $z=a+b \mathrm{i}$ ，其中 $a, b \in \mathbf{R}$ ，且 $b \neq 0$ ，则
A．$\left|z^{2}\right| \neq|z|^{2}=z^{2}$
B．$\left|z^{2}\right|=|z|^{2}=z^{2}$
C．$\left|z^{2}\right|=|z|^{2} \neq z^{2}$
D．$\left|z^{2}\right|=z^{2} \neq|z|^{2}$

【答案】C
13.

在 $\triangle A B C$ 中，已知 $\triangle A B C$ 的面积 $=\frac{a^{2}+b^{2}-c^{2}}{4}$ ，则 $\angle C=$
A．$\frac{\pi}{3}$
B．$\frac{\pi}{4}$
C．$\frac{\pi}{6}$
D．$\frac{2 \pi}{3}$

【答案】B
14.

关于参数 t 的方程 $\left\{\begin{array}{l}x=2 p t^{2} \\ y=2 p t\end{array}\right.$ 的图形是
A．圆
B．双曲线
C．抛物线
D．椭圆
【答案】 C
15．与直线 $3 x-4 y+12=0$ 关于 y 轴对称的直线方程为
A．$\frac{x}{-4}+\frac{y}{3}=1$
B．$\frac{x}{4}+\frac{y}{-3}=1$
C．$\frac{x}{-4}+\frac{y}{-3}=1$
D．$\frac{x}{4}+\frac{y}{3}=1$

的，把所选项前的宁母填在题后的括号内
＊1．当 $x \rightarrow 0$ 时，$f(x)=e^{-x^{2}+2 x^{3}}-1$ 与 $g(x)=x^{2}$ 比较是（）
A．$f(x)$ 是较 $g(x)$ 高阶的无穷小量
B．$f(x)$ 是较 $g(x)$ 低阶的无穷小量
C．$f(x)$ 与 $g(x)$ 是同阶无穷小量，但不是等价无穷小量
D．$f(x)$ 与 $g(x)$ 是等价无穷小量

解析：

$\frac{f(x)}{g(x)}=\frac{e^{-x^{2}+2 x^{3}-1}}{x^{2}}, \lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{-x^{2}+2 x^{3}}{x^{2}}=\lim _{x \rightarrow 0}(-1+2 x)=-1$

故选C。
＊2．设函数 $f(x)=x(x-1)(x-2) \cdots \cdots(x-2003)$ ，则 $f^{\prime}(0)$ 等于（ ）
A．-2003
B． 2003
C．-2003 ！
D． 2003 ！

解析

$$
\begin{gathered}
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim _{x \rightarrow 0}(x-1)(x-2) \cdots \cdots(x-2003): \\
=(-1) \times(-2) \times \cdots \cdots \times(-2003)=-2003!
\end{gathered}
$$

选 C

一，选择题： $1 \sim 10$ 小题，每小题 4 分，共 40 分在每小题给出的四个选项中，只有－项是符合题目要求的是
1．设函数 $f(x)=\left\{\begin{array}{ll}\frac{a m 1 \ldots \ldots}{x-1}, & x<1, \\ x^{2}-1, & x \geqslant 1,\end{array}\right.$ 则 $\lim _{x \rightarrow 1} f(x)$ 为（ ），

A． 0

B． 1

C． 2

D．不存在

2．设 $f(x)$ 在点 $x 0$ 处连续，则下列命题中正确的是（ ）．

A．$f(x)$ 在点 $x 0$ 必定可导

B．$f(x)$ 在点 $x 0$ 必定不可导
C． $\lim _{x \rightarrow \infty} f(x)$ 必定存在

D． $\lim _{x \rightarrow 0} f(x)$ 可能不存在
3． $\lim _{x \rightarrow \infty} \frac{\sin \angle x}{x}$ 等于（ ）．

A． 2

B． 1

C．$\frac{1}{2}$

D． 0

选择题体大题共 5 个小题，每小题 4 分，共 20 分。在每个小题给出的选项中，只有一项是符合题目要求的，把所选项前的字母填在顥后的括昌内）

1．下列函数中，当 $x \rightarrow 1$ 时，与无穷小量 $(1-x)$ 相比是高阶无穷小的是（B）
A． $\ln (3-x)$
B．$x^{3}-2 x^{2}+x$
C． $\cos (x-1)$
D．$x^{2}-1$

2．曲线 $y=3 \sqrt{x}-3+\frac{1}{x}$ 在 $(1,+\infty)$ 内是（B）
A．处处单调减小
B．处处单调增加
C．具有最大值
D．具有最小值

3．设 $f(x)$ 是可导函数，且 $\lim _{x \rightarrow 0} \frac{f\left(x_{0}+2 h\right)-f\left(x_{0}\right)}{h}=1$ ，则 $f^{\prime}\left(x_{0}\right)$ 为（D）
A． 1
B． 0
C． 2
D．$\frac{1}{2}$

4．若 $f\left(\frac{1}{x}\right)=\frac{x}{x+1}$ ，则 $\int_{0}^{1} f(x) d x$ 为（D）
A．$\frac{1}{2}$
B． $1-\ln 2$
C． 1
D． $\ln 2$

5．设 $u=x y^{z}, \frac{\partial u}{\partial x}$ 等于（D）
A．$z x y^{z}$
B．$x y^{z-1}$
C．y^{z-1}
D．y^{z}

一，选择題：1～10小题，每小题4分，共40分。
1． $\lim _{x \rightarrow \infty} \frac{2 x+1}{3 x-4}=$
A．$-\frac{1}{4}$
B， 0
C，$\frac{2}{3}$
D， 1

2，已知 $f(x)$ 在 $x=1$ 处可导，且 $f^{\prime}(1)=3$ ，则 $\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h}=$
A， 0
B， 1
C， 3
D， 6

3，设函数 $y=\ln x$ ，则 $y^{\prime}=$
A，$\frac{1}{x}$
B，$-\frac{1}{x}$
C． $\ln x$
D，e^{x}

4，已知 $f(x)$ 在区间 $(-\infty,+\infty)$ 内为单调减函数，且 $f(x)>f(1)$ ，则 x 的取值范围是
A，$(-\infty,-1)$
B，$(-\infty, 1)$
C，$(1,+\infty)$
D，$(-$
$\infty,+\infty$ ）

5，设函数 $y=e^{x}+2$ ，则 $d y=$
A．$\left(e^{x}+2\right) d x$
B，$\left(\mathrm{e}^{x}+2 x\right) d x$
C．$\left(\mathrm{e}^{x}+1\right) d x$
D， $\mathrm{e}^{x} d x$

一，选择题： $1 \sim 10$ 小题，每小题4分，共 40 分，在每小题给出的四个选项中，只有一项是符合题目要求的，把所选项削的字母填在题后的括号内，

1．当 $x \rightarrow 0$ 时， x 2 是 $\mathrm{x}-\ln (1+\mathrm{x})$ 的（ ）．
A．较高阶的无穷小量
B．等价无穷小量
C．同阶但不等价的无穷小量
D．较低枌的无穷小是
2．设函数 $f(\sin x)=\sin 2 x$ ，则 $f^{\prime}(x)$ 等于（ ）．
A． $2 \cos x$
B．$-2 \sin x \cos x$
C．\％
D． 2 x
3．以下结论正确的是（）．
A．丞数 $f(x)$ 的导数不存在的点，一定不是 $f(x)$ 的极值点
B．若 $x 0$ 为函数 $f(x)$ 的驻点，则 $x 0 \propto$ 为 $f(x)$ 的极值点
C．若函数 $f(x)$ 在点 $x 0$ 处有极值，且 $f^{\prime}(x 0)$ 存在，则必有 $f^{\prime}(x 0)=0$
D．若函故 $f(\mathrm{x})$ 在点 $\times 0$ 处连椟，则 $f^{\prime}(x 0)$ 一定存在

1，＝屟数 $Z=\ln (x+2 y)$ 的定义域。

解：$x+2 y>0$

2，$f(x y)=x^{2}+(y-2) \arctan \sqrt{x y^{3}}$ ，则 $f x^{\prime}(x, 2)$ 。
解：把y看作常数

$$
f(x, 2)=x^{x} \Rightarrow f^{\prime}(x, 2)=3 x^{2}
$$

3，$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}} \leq 1$ ，则 $\iint_{D} 2 d \delta_{0}$ 。
解： $2 \iint_{D} d \delta=2 S_{D}=2 \pi \mathrm{ab}$
4，设实数 r．满足 $\mid r<1$ ，则罢比级数 $\sum_{n=1}^{\infty} r^{n}$ 。
解：$\sum_{n=1}^{\infty} r^{n}=\frac{r}{1-r}, \sum_{n=1}^{\infty} r^{n-1}=\frac{1}{1-r}$
5，证 $y_{1}=e^{x}, y_{2}=e^{x}+x$ 是线性微分方程 $y^{\prime}+p(x) y=Q(x)$ 的两个特解，则其通嫴为：

$$
y^{\prime}+p(x) y_{2}=Q(x)
$$

解：$\left(y_{2}-y_{1}\right)$ 为齐次方程的解；
通解为：$C x+e^{x}$

6．正项级数 $\sum_{m=1}^{\infty} U_{n}$ 收敛，则交错级数 $\sum_{m=1}^{\infty}(-1)^{n} U_{n^{*}}$
解：讨论凂对值情况

$$
\left|(-1)^{n} U_{n}\right|=\left|U_{n}\right|=U_{n} \geq 0
$$

\therefore 为绝对收站

7，$x^{2}+y^{2} \leq R^{2}, x \geq 0$ ，则 $\iint \sqrt{R^{2}-x^{2}-y^{2}} d \delta$ 。

$$
\begin{aligned}
& \text { 䚡: } z=\sqrt{R^{2}-x^{2}-y^{2}} \Rightarrow z^{2}=R^{2}-x^{2}-y^{2} \Rightarrow x^{2}+y^{2}+z^{2}=R^{2} \\
& \quad \because x \geq 0 \Rightarrow \frac{4}{3} \pi R^{3} \times \frac{1}{2} \times \frac{1}{2}=\frac{1}{3} \pi R^{3}
\end{aligned}
$$

8，$f(x, y)$ 在点 $\left(x_{0}, y_{0}\right)$ 全微分存在是函数在点 $\left(x_{0}, y_{0}\right)$ 处连续的充分条件。

9．要级数 $\sum_{n=0}^{\infty} \frac{x^{n}}{2^{n}}$ 的收敛半径为
解 $1:$ ： $\int_{\frac{1}{2^{n}}}^{2^{n+1}}=2$ ma：$\sqrt[1 / n]{\frac{1}{2^{n}}}=1 / \frac{1}{2}=2$

10，楼度 erad
（1），$f(x, y)=f x i+f y j=\{f x \cdot f y\}$（冰 x, y 的渦导数）。
（2），$f=x^{2}+y^{2},(-1,2)$ 梯度

解：$f x=2 x, f y=2 y$
$\{2 x \cdot 2 y\}$ 梯度为 $\{-2,4\}$
（3）$\sum_{n=0}^{\infty} \frac{x^{n}}{(n+1) 3^{n}}$

解得：R＝3
（4），$x y^{\prime}+y=\cos x$ ，下列明个正确（c）
A． $\cos x$
8． $\sin x$
c．$\frac{1}{x} \sin x$
D．$\frac{1}{x} \cos x$

11，设 $z=(x-y)^{y}$ ，求 $z_{x}^{\prime}, z_{y}^{\prime}$ 。
解：$z_{x}^{\prime}=y(x-y)^{y-1} \bullet(x-y)_{x}^{\prime}=y(x-y)^{y-1}$
$\ln z=\ln (x-y)^{y}=y \ln (x-y)$
$\frac{1}{z} \cdot z_{y}^{\prime}=\ln (x-y)+y \cdot \frac{1}{x-y} \cdot(x-y)_{y}^{\prime}=\ln (x-y)-\frac{y}{x-y}$
两边同来以：得：

$$
\begin{aligned}
z_{y}^{\prime} & =z\left[\ln (x-y)-\frac{y}{x-y}\right]=(x-y)^{y}\left[\ln (x-y)-\frac{y}{x-y}\right] \\
& =(x-y)^{y-1}[(x-y) \ln (x-y)-y]
\end{aligned}
$$

12，$z=x^{3}+y^{3}$ ，求全微分 $d z$
解：$d z=z_{x}^{\prime} d x+z_{y}^{\prime} d y=3 x^{2} d x+3 y^{2} d y$

13．计背 $\iint_{D} x d \delta$ ，其中 $D: 0 \leq x \leq 1,-2 \leq y \leq 3$ ．
解1： $\iint_{D} x d \delta=\int_{0}^{1} x d x \int_{-2}^{3} d y=\int_{0}^{1} x d x[3-(-2)]$

$$
=5 \int_{0}^{1} x d x=5 \times\left.\frac{1}{2} x^{2}\right|_{0} ^{1}=\frac{5}{2}
$$

14．计其 $\iint_{D} e^{x^{2}+y^{2}} d \delta$ ，其中 $D: x^{2}+y^{2} \leq 1$
解：用报坐标 $x=r \cos \theta, y=r \sin \theta$

$$
\begin{aligned}
& D: 0 \leq r \leq 1 \quad 0 \leq \theta \leq 2 \pi \\
& x^{2}+y^{2}=r^{2} \quad d \delta=r d r d \theta \\
& \iint_{D} e^{x^{2}+y^{2}} d \delta=\iint_{D} e^{r^{2}} \cdot r d r d \theta=\int_{0}^{2 \pi} d \theta \int_{0}^{1} e^{r^{2}} \cdot r d r
\end{aligned}
$$

$$
=\int_{0}^{2 \pi} \int_{0}^{1} \frac{1}{2} e^{r^{2}} d\left(r^{2}\right)=\left.2 \pi \cdot \frac{1}{2} e^{r^{2}}\right|_{0} ^{1}=\pi(e-1)
$$

15，求票级数 $\sum_{n=1}^{\infty} \frac{x^{n}}{x}$ 的收放域。
解：$R=\lim _{\mathrm{n} \rightarrow \infty}\left|\frac{\mathrm{a}_{\mathrm{n}}}{\mathrm{a}_{\mathrm{n}+1}}\right|=\lim _{\mathrm{n} \rightarrow \infty} \frac{\frac{1}{n}}{\frac{1}{n+1}}=\lim _{\mathrm{n} \rightarrow \infty} \frac{n+1}{n}=\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{n}\right)=1$
得收站区间 $(-1,1)$ ，即当 $|x| \leq 1$ 时，畐级数绝对收敘

在竝点 $x=-1$ 处，畐级敖成为交棈级数 $\sum_{n=1}^{\infty}(-1)^{n} \cdot \frac{1}{n}$ ，收站
\therefore 要级数的收领域为 $[-1,1)$
16．判定级数 $\sum_{n=2}^{\infty}\left(1+\frac{1}{n}\right)^{4 n}$ 的较教域。
解： $\lim _{\mathrm{n} \rightarrow \infty} U_{n}=\lim _{\mathrm{n} \rightarrow \infty}\left(1+\frac{1}{n}\right)^{4 n}=\lim _{\mathrm{n} \rightarrow \infty}\left[\left(1+\frac{1}{n}\right)^{n}\right]^{4}=e^{4} \neq 0$
不㴖足级数收敛的必要条件，故该級数发龍。
17，氷砫分方程 $\frac{d y}{d x}=-\frac{x}{y}$ 的通解。
解：$\frac{d y}{d x}=-\frac{x}{y} \Leftrightarrow y d y=-x d x$

两洸分别抧分得 $\int y d y=-\int x d x$

$$
\begin{aligned}
& \frac{1}{2} y^{2}=-\frac{1}{2} x^{2}+\frac{1}{2} C \\
& y^{2}=-x^{2}+C \Rightarrow x^{2}+y^{2}=C(C \geq x) \\
& \therefore x^{2}+y^{2}=C \text { 为微分方程的通解 }
\end{aligned}
$$

18．氷徵分方程 $y^{\prime \prime}-4 y^{\prime}+4 y=0$ 的通解。
解：特征方程为 $r^{2}-4 r+4=0$

$$
\text { 即 }(r-2)^{2}=0
$$

$$
\text { 得二重根 } r_{1}=r_{2}=2
$$

故教分方程的通解为 $y=\left(C_{1}+C_{2} x\right) e^{2 x}\left(C_{1}, ~ C_{2}\right.$ 为任意常数）

一，选挂题（每小题 4 分，共 40 分。在每小题给出的四个选项中，只有一项符合题目要求的，把所选项前的字母道写在题后的括号中）
1．乲数 $f(x)=\left\{\begin{array}{ll}\frac{\sin \left(x^{2}-1\right)}{x-1} & x<1 \\ 0 & x=1, \\ x^{2}+1 & x>1\end{array}\right.$ 则： $\lim _{\mathrm{x} \rightarrow 1} f(x)$
A： 0
B： 1
C： 2
D：不存在

解答：本题考䉘的昳识点量左右极限与极限的关系
$\lim _{x \rightarrow)^{-}} f(x)=\lim _{x \rightarrow 1_{-}} \frac{\sin \left(x^{2}-1\right)}{x-1}=2, \lim _{\left.x \rightarrow\right|^{+}} f(x)=\lim _{x \rightarrow j^{+}}\left(x^{2}+1\right)=2$ ，所以： $\lim _{x \rightarrow j^{-}} f(x)=\lim _{\left.x \rightarrow\right|^{-}} f(x)$
所以： $\lim _{\mathrm{v} \rightarrow 1} f(x)=2$ ，所以：选择 C
2．䐂教 $y=f(x)$ 在 (a, b) 内二阶可导，且 $f^{\prime}(x)>0, f^{\prime}(x)<0$ ，则：曲线 $y=f(x)$ 在 (a, b) 内
A：单调増加且上凹
B：单调堿少且下
C：单调城少且上凹
D：单调减少且下凹
凸性
选择 B
3．当 $x \rightarrow 0$ 时，x^{2} 是 $x-\ln (1+x)$ 的
A：较高阶无穷小
B：等价无穷小

C：同阶但不等价无穷小
D：较低阶无穷小
解答：本题考察的知识点是无穷小阶的比较
因为： $\lim _{x \rightarrow 0} \frac{x^{2}}{x-\ln (1+x)}=\lim _{x \rightarrow 0} \frac{2 x}{1-\frac{1}{1+x}}=\lim _{x \rightarrow 0} \frac{2 x(1+x)}{x}=2$

所以：x^{2} 是 $x-\ln (1+x)$ 的同阶但不等价无穷小，所以：选择 C
4．园数 $y=x^{2}-x+1$ 在区间 $[-1,3]$ 上再足拉格的日中值定理的 ζ 值等于
A：$-\frac{3}{4}$
B： 0
c：$\frac{3}{4}$
D： 1

解答：本愿考察的知识点是拉格的日中值定理的条件与结论
因为：圂数 $y=x^{2}-x+1$ 在区间 $[-1,3]$ 上㴖足拉格䬦日中值定理
所以：$f(3)-f(-1)=(2 \xi-1)[3-(-1)]$ ，解得：$\xi=1$ ，所以：选择 D
5．设 $x=1$ 为 $y=x^{3}-a x$ 的极小值点，则：a 等于
A： 3
B：$\sqrt{3}$
c： 1
D：$\frac{1}{3}$

解答：本遮考察的知识点是判定极值的必要条件
因为：$y=x^{3}-a x$ ，所以：$y^{\prime}=3 x^{2}-a$ ，令 $y^{\prime}=0$ ，得到： $3 x^{2}-a=0$
所以：$a=3$ ，所以：选择 A
6．设远教 $f(x)=\arcsin x$ ，则：$f^{\prime}(x)$ 等于
A：$-\sin x$
B： $\cos x$
c：$\frac{1}{\sqrt{1-x^{2}}}$
D：$-\frac{1}{\sqrt{1-x^{2}}}$

解答：本䮖考察的知识点量基本导数公式，选择 C
7．设 $f(x)$ 的一个原远颇为 x^{2} ，则：$f^{\prime}(x)$ 等于
A：$\frac{1}{3} x^{3}$
B：x^{2}
C： $2 x$
D： 2

解答：本还考察的知识点是原原制的梚念
$f(x)=\left(x^{2}\right)^{\prime}=2 x$ ，所以：$f^{\prime}(x)=2$ ，选择 D
8．设 $f^{\prime}(x)$ 为達续远数，则： $\int_{0}^{1} f\left(\frac{x}{2}\right) d x$ 等于
A：$f(1)-f(0)$
B： $2[f(\mathrm{I})-f(0)]$
C： $2[f(2)-f(0)]$
D： $2\left[f\left(\frac{1}{2}\right)-f(0)\right]$

解管：本还考察的知识点是牛顿一莱布尼茲公式与定积分的换元法
$\int_{0}^{1} f^{\prime}\left(\frac{x}{2}\right) d x=2 \int_{0}^{1} f^{\prime}\left(\frac{x}{2}\right) d \frac{x}{2}=\left.2 f\left(\frac{x}{2}\right)\right|_{0} ^{1}=2\left[f\left(\frac{1}{2}\right)-f(0)\right]$ ，所以：选择 D
9．设有直线 $l_{1}: \frac{x-1}{1}=\frac{y+2}{2}=\frac{z}{\lambda}$ ，直线 $l_{2}: \frac{x}{2}=\frac{y+1}{4}=\frac{z+5}{-1}$ ，当两直线平行时，λ 等于
A： 1
B： 0
C：$-\frac{1}{2}$
D：-1

解答：本随考察的知识点是直线间的关系
直线 $I_{1}: \frac{x-1}{1}=\frac{y+2}{2}=\frac{z}{\lambda}$ ，直线 $I_{2}: \frac{x}{2}=\frac{y+1}{4}=\frac{z+5}{-1}$ 的方向向量分别是 $\bar{s}=(1,2, \lambda)$ ， $\vec{n}=(2,4,-1)$ ，因为两直线平行，所以：$\frac{1}{2}=\frac{2}{4}=\frac{\lambda}{-1}$ ，所以：$\lambda=-\frac{1}{2}$
10．下列的题中正确的是
A：设级数 $\sum_{n=1}^{\infty} u_{n}$ 收敵，级数 $\sum_{n=1}^{\infty} v_{n}$ 发散，则：$\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)$ 可能收澈
B：设级数 $\sum_{s=1}^{n} u_{n}$ 收敵，级数 $\sum_{n=1}^{n} v_{n}$ 发散，则：$\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)$ 必定发䑤
C：设级数 $\sum_{s=1}^{n} u_{n}$ 收鉸，且 $u_{n} \geq v_{n}(n=k, k+1, \cdots)$ ，则：级数 $\sum_{\mathrm{s}=1}^{\infty} v_{n}$ 必定收敵
D：论级数 $\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)$ 收侅，且有 $\sum_{n=1}^{\infty}\left(u_{n}+v_{n}\right)=\sum_{n=1}^{\infty} u_{n}+\sum_{n=1}^{\infty} v_{n}$
解管：本野考察的知识点是级数的性质

选择 B

二，填空顒（每小题 4 分，共40分）

11． $\lim _{x \rightarrow 0}\left(\frac{2+x}{2-x}\right)^{\frac{1}{x}}=$ \qquad
解答：本题考察的知识点是极限的运算
$\lim _{x \rightarrow 0}\left(\frac{2+x}{2-x}\right)^{\frac{1}{x}}=\lim _{x \rightarrow 0}\left(\frac{1+\frac{x}{2}}{1-\frac{x}{2}}\right)^{\frac{1}{x}}=e$
12．设 $y=\frac{\ln (1+x)}{1+x}$ ，则：$\left.y^{\prime}\right|_{x=0}=$ \qquad
解答：本题考察的知识点是导数计望
$y^{\prime}=\frac{1-\ln (x+1)}{(1+x)^{2}}$ ，所以：$\left.y^{\prime}\right|_{x=0}=\frac{1-\ln 1}{(1+0)^{2}}=1$
13． $\int \frac{x^{2}}{1+x^{2}} d x=$ \qquad
解答：本题考察的知识点是不定积分的运算
$\int \frac{x^{2}}{1+x^{2}} d x=\int\left(1-\frac{1}{1+x^{2}}\right) d x=x-\arctan x+C$
14． $\int_{0}^{1}\left(x^{2}+2^{x}\right) d x=$ \qquad
解答：本题考察的知识点是定积分运算

$$
\int_{0}^{1}\left(x^{2}+2^{x}\right) d x=\left[\frac{1}{3} x^{3}+\frac{2^{x}}{\ln 2}\right]_{0}^{1}=\frac{1}{3}+\frac{1}{\ln 2}
$$

15．设 $y=f(x)$ 由方程 $x^{2}+x y^{2}+2 y=1$ 确定，则：$d y=$ \qquad
解管：本题考察的知识点是隐函数的㩆分
$2 x+y^{2}+2 x y y^{\prime}+2 y^{\prime}=0$ ，所以：$y^{\prime}=-\frac{2 x+y^{2}}{2 x y+2}$ ，所以：$d y=-\frac{2 x+y^{2}}{2 x y+2} d x$
16．徵分方程 $y^{*}=y$ 的通解是

特征方程是 $r^{2}-1=0$ ，得到：特征根是 $r_{1}=1, ~ r_{2}=-1$
所以：方程通䌦是 $y=C_{1} e^{x}+C_{2} e^{-x}$
17．二元通数 $z=x^{2}+y^{2}+1$ 的极小值是
解答：本题考察的知识点是二元层㪄的极值
$z=x^{2}+y^{2}+1 \geq 1$ ，当 $x=y=0$ 时，取得最小值是 1
18．二元还数 $z=x y^{2}+\arcsin y^{2}$ ，则：$\frac{\partial z}{\partial x}=$ \qquad
解答：本题考察的知识点是偏导数计華
$\frac{\hat{z}}{\partial x}=y^{2}$
19．设区域 $D: y=x^{2}, ~ x=y^{2}$ 围成的在第一象限內的区域，则： $\iint_{D} d x d y=$ \qquad
解咨：本题考察的知识点是二重积分的计算
$\iint_{D} d x d y=\int_{0}^{1} d x \int_{x^{2}}^{\sqrt{\sqrt{2}}} d y=\int_{0}^{1}\left(\sqrt{x}-x^{2}\right) d x=\left.\left(\frac{2}{3} x^{\frac{3}{2}}-\frac{1}{3} x^{3}\right)\right|_{0} ^{1}=\frac{1}{3}$
20．畐级数 $\sum_{\mathrm{s}=1}^{\infty} \frac{x^{2 n-1}}{3^{n}}$ 的收敘半径是
解答：本题考察的知识点是票级数的收敌半径
$\lim _{n \rightarrow \infty}\left|\frac{u_{w+1}}{u_{n}}\right|=\lim _{n \rightarrow \infty} \frac{1}{3} x^{2}=\frac{1}{3} x^{2}$ ，且 $\frac{1}{3} x^{2}<1$ ，解得：$-\sqrt{3}<x<\sqrt{3}$ 所给级数绝对收铰

所以：收敘半径是 $\sqrt{3}$

三，觬答邉

21．（本题洪分 8 分）
求： $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \ln (1-x)}$
解答：
$\lim _{x \rightarrow 0} \frac{1-\cos x}{x \ln (1-x)}=\lim _{x \rightarrow 0} \frac{\sin x}{\ln (1-x)-\frac{x}{1-x}}=\lim _{x \rightarrow 0} \frac{\cos x}{-\frac{1}{1-x}-\frac{1-x-x}{(1-x)^{2}}}=-\frac{1}{2}$
22．（本题洪分 8 分）
设 $y=x \arctan x$ ，求：y^{\prime}
解答：
$y^{\prime}=\arctan x+\frac{x}{1+x^{2}}$
23．（本题涌分 8 分）
计算： $\int_{0}^{3} \frac{1}{1+\sqrt{1+x}} d x$
解答：
令 $1+x=u^{2}$ ，则：$x=u^{2}-1, ~ d x=2 u d u$ ；当 $x=0$ 时，$u=1$ ；当 $x=3$ 时，$u=2$
所以： $\int_{0}^{3} \frac{1}{1+\sqrt{1+x}} d x=\int_{1}^{2} \frac{2 u}{1+u} d u=\left.2[u=\ln (u+1)]\right|_{1} ^{2}=2\left(1-\ln \frac{3}{2}\right)$
24．（本题洪分8分）
计算： $\int_{0}^{+\infty} \frac{x}{1+x^{4}} d x$
解答：
$\int_{0}^{\infty} \frac{x}{1+x^{4}} d x=\lim _{x \rightarrow-\infty} \int_{0}^{b} \frac{x}{1+x^{4}} d x=\left.\frac{1}{2} \lim _{x \rightarrow \infty} \arctan x^{2}\right|_{0} ^{b}=\frac{1}{2} \lim _{b \rightarrow-\infty} \arctan b^{2}=\frac{\pi}{4}$
25．（本題淇分 8 分）
求：$y^{*}+4 y^{\prime}+4 y=e^{-x}$ 的通解
解答：

对应的芥次方程为 $y^{\prime}+4 y^{\prime}+4 y=0$ ，耳其待征根方理是 $r^{2}+4 r+4=0$
解得特你根为 $r_{1}=r_{2}=-2$ ，则：通推为 $y_{1}=\left(C_{1}+C_{2} x\right) e^{-2 x}$
设所给方程的特解是 $y_{2}=A e^{-x}$ ，代入所给方理可得 $A=1$
所以：原方程的通閣是 $y=y_{1}+y_{2}=\left(C_{1}+C_{2} x\right) e^{-2 x}+e^{-x}$
26．（本题洅分 10分）
设 $f(x)=\int_{0}^{2 x} f\left(\frac{t}{2}\right) d t+x^{2}$ ，求：$f(x)$
解答：
将所给表达式两涨同时对 x 求导，得到：$f^{\prime}(x)=2 f(x)+2 x$ ，即：$f^{\prime}(x)-2 f(x)=2 x$
所以：通锲为 $f(x)=e^{-\int \rho(x) t}\left[\int q(x) e^{\int p(x)} d x+C\right]$
$=e^{\int 2 x}\left[\int 2 x e^{-\int 2 x} d x+C\right]=e^{2 x}\left[\int 2 x e^{-2 x} d x+C\right]=e^{2 x}\left(-x e^{-2 x}-\frac{1}{2} e^{-2 x}+C\right]=C e^{2 x}-x-\frac{1}{2}$
27．（本整輩分 10 分）
计萛： $\iint_{D} \frac{\sin y}{y} d x d y$ ，其中 D 是由 $y=x, ~ x=0, ~ y=1$ 围成的平面区域
解答：
$\iint_{D} \frac{\sin y}{y} d x d y=\int_{0}^{1} d y \int_{0}^{y} \frac{\sin y}{y} d x=\int_{0}^{1} \sin y d y=-\left.\cos y\right|_{0} ^{1}=1-\cos 1$
28．（本题㳻分 10分）
求由曲线 $y=x, ~ y=\ln x$ 及 $y=0, ~ y=1$ 围成的平面国形的面积 S 及此平面園形绕 y 轴施转一周所得旅转体体伿
解答：
$S=\int_{0}^{1}\left(e^{y}-y\right) d y=\left.\left(e^{y}-\frac{1}{2} y^{2}\right)\right|_{0} ^{1}=e-\frac{3}{2}$
$V=\pi \int_{0}^{1}\left[e^{2 y}-y^{2}\right] d y=\left.\pi\left[\frac{1}{2} e^{2 y}-\frac{1}{3} y^{3}\right]\right|_{0} ^{1}=\frac{\pi}{2} e^{2}-\frac{5}{6} \pi$

